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PARAMETER ESTIMATION BASED TYPE-II FUZZY LOGIC*

K.Ş. KULA1, T.E. DALKILIÇ2

Abstract. Regression analysis is an area of statistics that deals with the investigation of the

dependence of a variable upon one or more variables. Recently, much research has studied

fuzzy estimation. The fuzzy regression method can be used to obtain unknown parameters

of regression models based fuzzy data. In this study, we will use the ANFIS for parameter

estimation and propose an algorithm in case where the independent variables are fuzzy sets.

These sets are type-II fuzzy sets because of characterized by a Gaussian membership function

with fuzzy mean.
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1. Introduction

Fuzzy set theory was introduced by Lotfi A. Zadeh (1965) at a conference in United States.
And the first serious step in this regard has been taken in an article published in 1965 by Lotfi
A. Zadeh. In this study, fuzzy logic and fuzzy set theory is discussed in detail [2].

Over the last 30 years, studies on the theory of fuzzy sets have been conducted extensively.
When there is an uncertainty about the membership functions fuzzy set is called as type-II fuzzy
set. We can say that type-II fuzzy logic is a generalization of conventional fuzzy logic (type-I)
in the sense that uncertainty is not only limited to the linguistic variables but also is present in
the definition of the membership functions [2].

Studies on Type-II fuzzy clusters briefly summarized as follows:
Karnik and Mendel (1999), defined the uncertainty of the rules in a type-II fuzzy inference

system that the rules are uncertain. They applied a type II fuzzy logic system to time varying
channel equalization and this better performance than a type I fuzzy logic system and nearest
neighbor classifier.

Türķsen (1999), proposed and discussed in fuzzy system development schema. For both the
type-I and type-II fuzzy theory, they described the extraction of fuzzy sets and fuzzy rules with
the application of an improved fuzzy clustering technique which is essentially an unsupervised
learning of the fuzzy sets and rules from a given input-output data set.

Karnik and Mendel (2001), introduced the centroid and generalized centroid of a type-II fuzzy
set and explained how are used to calculate them. Furthermore, they showed how to compute
the centroid of interval and Gaussian type-II fuzzy sets.
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Karnik and Mendel (2002), discussed in set theoretic operations for type-II sets, properties of
membership grades of type-II sets, and type-II relations and other compositions, and cartesian
products under minimum and product t-norms.

Mendel and John (2002), defined a new representation theorem of type-II fuzzy sets and
introduced formulas for the union, intersection, and complement for type-II fuzzy sets without
having to use the Extension Principle by using this new representation.

Mendel (2007), examined questions, such as ”What is a type-II fuzzy set”, ”What is it different
from a type-I fuzzy set”, ”the importance of definition of type-II fuzzy sets”, ”How and why
are type-II fuzzy sets used in rule-based systems” and ”How are the detailed computations for
an interval type-II fuzzy logic system” in study titled an introduction to type-II fuzzy sets and
systems.

Mendel (2007), described the important advances that have been made during the past five
years both general and interval type-II fuzzy sets and systems in the study titled ”advance in
type-II fuzzy sets and systems”.

In the second part of the study will be definitions of type-II fuzzy logic method, in the third
part described the structure of fuzzy inference system based on fuzzy adaptive network will be
described. In the fourth part, an algorithm will be suggested to prediction of the unknown
parameter of the regression model in the case of independent variable characterized by a normal
membership function. A numerical application examining the work and validity of the suggested
algorithm in the fifty part and in the last part a discussion and conclusion are provided.

2. Type-II fuzzy logic

Type-II fuzzy systems are consist of fuzzy if-then rules that are includes type-II fuzzy sets.
Basically, a type-II fuzzy set is a set in which we also have uncertainty about the membership
function. We can say that type-II fuzzy logic is a generalization of traditional fuzzy logic (type-
I). Uncertainty is not on the limited to the linguistic variable but also is present in the definition
of the membership function [1,2].

The concept of a type-II fuzzy set, was introduced by Zadeh in 1975 as an extension of concept
of an ordinary fuzzy set. A type-II fuzzy set is characterized by a fuzzy membership function,
the membership degree of each element of this set is in [0,1]. In this sense, differs from type-I
fuzzy sets, because the degree of membership in the type-I fuzzy set is a crisp number in range
of [0, 1]. Such sets can be used in situations where there is uncertainty about the membership
degree and uncertainty in the shape of the membership function or in some of its parameters.
The membership of an element in a set cannot determine as 0 or 1, type-I fuzzy set is used.
Similarly, when the situation is so fuzzy that we have trouble determining the membership degree
even as a crisp number in [0, 1], fuzzy sets of type-II is used. In many real-world problems the
exact form of the membership degree may not be identified. Consider the fuzzy set characterized
by normal membership function with mean m and standard deviation can take values in [σ1, σ2],
the membership function is defined as

µ (x) = exp

{
−

[
x−m

σ

]2
}

, σ ∈ [σ1, σ2] . (1)

In this case, obtain a different membership function curve corresponding to each value of σ.
In the same way, consider the fuzzy set characterized by normal membership function with
standard deviation σ and mean can take values in [m1,m2], the membership function is defined
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as;

µ (x) = exp

{
−

[
x−m

σ

]2
}

, m ∈ [m1,m2] (2)

and in both cases µ(x) is a fuzzy set.
In this study, the unknown parameters of regression model will be obtained in the event of

the independent variables are fuzzy sets that characterized by normal membership function and
mean of the membership function is a fuzzy number like as m ∈ [m1,m2]. Fuzzy adaptive
network based fuzzy inference system will be used in order to obtain the unknown parameters
of regression model [2].

3. Fuzzy adaptive network based fuzzy inference system

The Adaptive-Network Based Fuzzy Inference System (ANFIS) is a neural network architec-
ture that can solve any function approximation problem. An adaptive network is a multilayer
feed forward network in which each node performs a particular function on incoming signals as
well as a set of parameters pertaining to this node and it has five layers. The formulas for the
node functions may wary from node to node and the choice of each node function depends on
the overall input-output function which the adaptive network is required to carry out.

A neural network enabling the use of a fuzzy inference system for fuzzy regression analaysis
is known as an adaptive network. Used for obtaining a good approach to regression functions
and formed via neurals and connections, such an adaptive network consist of five layers [4].

To illustrate how a fuzzy inference system can be represented by ANFIS, let us consider the
following example. Suppose a data set has two-dimensional input X = (x1, x2). For input
X = x1, there are two fuzzy sets ”small” and ”low” and for input x2, two fuzzy set ”large” and
”high”. In this case a fuzzy inference system contains the following for rules:

R1 : If(x1 small and x2 low) then (Y = Y 1 = c1
0 + c1

1x1 + c1
2x2)

R2 : If(x1 small and x2 high) then (Y = Y 2 = c2
0 + c2

1x1 + c2
2x2)

R3 : If(x1 large and x2 low) then (Y = Y 3 = c3
0 + c3

1x1 + c3
2x2)

R4 : If(x1 large and x2 high) then (Y = Y 4 = c4
0 + c4

1x1 + c4
2x2)

There are two levels of nodes in layer one. The first level includes nodes ”small” and ”large” and
the second level includes nodes ”low” and ”high”. The output of the layer is the membership
function based on the linguistic value of the input. Nodes in layer two output the products wl

(l = 1, ..., 4) and the number of nodes in this layer is equal to combination of the nodes which
are located in levels from layer one . Layer three performs a normalization of the output signals
from layer two. Each node in layer four corresponds to the consequence of each fuzzy if-then
rule. For example the first node in layer four includes Y 1 = c1

0 + c1
1x1 + c1

2x2. Finally, the single
node in layer five computes the overall output as the summation of all incoming signals from
layer four [3].

The algorithm associated with the defined network structure of determining unknown re-
gression parameter in the case of independent variables derived from a Normal distribution, is
proposed as follows.

4. An algorithm for parameter estimation

The process of determining parameters of regression model begins with determining class
numbers of independent variables and a priori parameters. The priori paremeters are charac-
terized the distribution. In this work since the independent variables come from a gaussian
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distribution, we are interested in center (m) and spread (σ) In the case of independent variables
come from gaussian distribution, the algorithm to obtain the unknown parameter of regression
model is determined as follows.

Step 1: Class numbers related to the data set associated with the independent variables are
determinated intuitively.

Step 2: An a priori parameter set is determined. Center and spread parameter are depend
on level number of independent variables and its range.

Step 3: wL weights are counted, which are used to form matrix B to be used in determining
posterior parameter set. wL weights are outputs from the third layer of the adaptive network and
calculated using the membership function of Normal distribution. When independent variable
numbers are indicated with p and if the fuzzy class number associated with each variable is
indicated by li; i = 1, ..., p the fuzzy rule number is indicated by L =

∏p
i=1 li. The hth node in

the first layer is adaptive, and is defined as

f1,h = µFh
(xi) . (3)

Where fuzzy cluster related to fuzzy rules are indicated with F1, F2, ..., Fh and µh is the
membership function related to Fh. Different membership function can be defined for Fh. Here
membership functions are defined as

µFh
(xi) = exp

[
−

(
xi −mh

σh

)2
]

. (4)

Here, {mh, σh} is priori parameter set suitable for gaussin distribution and m is a fuzzy
parameter and takes values in the range of m ∈ [m1,m2].

Membership degrees of independent variables are determinated by defined membership func-
tion which is given in Eq. (4.2). wL weights are obtained from the multiplication of these
membership degrees and defined as

wL = µFL
(xi) µFL

(xj) . (5)

wL weights are normalization of the wL and determinated by

wL =
wL

∑m
L=1 wL

. (6)

Step 4: When the one of the priori parameter m is a fuzzy number, the posterior parameter
set cL

i which is the unknown coefficients of regression model obtained as a fuzzy number shape
of cL

i =
(
aL

i , bL
i

)
(i = l, ..., p). Under this condition, the equalty Z =

(
BT B

)−1
BT Y is used for

determining the a posteriori parameter set. Here, B and Y defined as

B =




w1
1 . . . wm

1 , w1
1x11, . . . wm

1 x11, . . . , w1
1xp1 . . . wm

1 xp1
...

. . .
...

...
. . . wl

kxjk
. . .

...
. . .

...
w1

n · · · wm
n , w1

nx1n · · · wm
n x1n, . . . , w1

nxpn · · · wm
n xpn


,

Y = [y1, y2, · · · , yn]T .
Step 5: By using the posteriori parameter set cL

i =
(
aL

i , bL
i

)
obtained in Step 4, the regression

model indicated by Y L = cL
0 + cL

1 x1 + cL
2 x2 + ...+cL

p xp. Setting out from the models and weights
specified in Step 3, the prediction values are obtained using

Ŷ =
m∑

L=1

wLY L. (7)

Step 6: Error related to the model is measured as
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ε =
∑n

k=1(Yk − Ŷk)2

n
. (8)

If ε < φ, then the posteriori parameter has been obtained as parameters of regression models
to be formed, the process is determinated. If ε ≥ φ, then Step 6 begins. Here φ is a law stable
value determinated by decision maker.

Step 7: Central priori parameters specified in Step 1, are updated with v
′
i = vi ± t in a way

that it increases from the lowest value to the highest and decreases from the highest value to
the lowest. Here, t is size of step;

t =
max (xji)−min (xji)

a
; j = 1, 2, ..., n; i = 1, 2, ..., p (9)

and a is stable value which is determinant of size of step and therefore iteration number.
Step 8: Predictions for each priori parameter obtained by change and error criterion related

to these predictions are counted with

εk = Yk − Ŷk. (10)

Here; Yk is k. predicted outcome and Ŷk is k. network output of input vector.
The lowest of error criterion is defined. Priori parameters giving the lowest error specified,

and prediction obtained via the models related to these parameters is taken as output.

5. Numerical example

Data set used in the application is selected from the literature and includes two independent
variables and one dependent variable. This set is located in the Table 1.

Applying least squares, the estimated regression model yields
Ŷ = 0.159− 0.0515X1 + 0.2650X2

and the algorithm proposed in Section four was counted with a program written in MATLAB.
From the program, the regression models based fuzzy inference systems are as follows

Ŷ1 = (3.4751; 0.3987) + (1.3074; 0.1214)X1 − (1, 5979; 0.1681)X2,

Ŷ2 = (126.3823; 11.9832)− (5, 5898; 0.6504)X1 − (0.0736; 0.0081)X2,

Ŷ3 = (−220.4047; 21.3941) + (4.7533; 0.4659)X1 − (5.6617; 0.5765)X2,

Ŷ4 = (185.3528; 19.5434)− (8.3921; 0.9324)X1 + (3.1306; 0.2987)X2.

6. Conclusion

The independent variables are comes from a normal distribution, and regression models are
formed using membership functions that are appropriate to the normal distribution. Since he
central parameter m located in normal membership function is fuzzy parameter and takes values
in the range m ∈ [m1,m2] the unknown parameters of regression model are obtained as fuzzy
numbers. The prediction values obtain from adaptive network and the prediction values obtained
from least square estimates are compared. According to the indicated error criterion, the errors
related to the predictions that are obtained from the network are less than errors obtained from
the least square estimates.
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Table 1. Prediction and error values for data set

X1 X2 Y Ŷ(Network)i
e(Network)i

Ŷ(LSE)i
e(LSE)i

24.7000 15.0000 2.6500 (2.6291;0.2789) -0.0209 2.8611 -0.2111
24.8000 17.0000 2.6300 (3.0277;0.2941) 0.3977 3.3859 -0.7559
26.5000 19.4000 4.9500 (4.2411;0.4314) -0.7089 3.9343 1.0157
29.6000 20.1000 4.4900 (4.3820;0.4284) -0.1080 3.9600 0.5300
25.7000 19.5000 3.1700 (3.7564;0.3562) 0.5864 4.0020 -0.8320
25.0000 20.1000 3.8800 (3.6307;0.3765) -0.2493 4.1971 -0.3171
21.6000 16.3000 3.9000 (4.0228;0.3925) 0.1228 3.3653 0.5347
24.7000 18.0000 3.5100 (3.1563;0.2812) -0.3537 3.6561 -0.1461
25.9000 18.3000 3.9000 (3.7009;0.3689) -0.1991 3.6737 0.2263
25.6000 18.7000 3.4700 (3.5871;0.3681) 0.1171 3.7952 -0.3252
27.9000 21.9000 5.5300 (4.6815;0.4585) -0.8485 4.5246 1.0054
25.8000 20.0000 3.4800 (3.8893;0.3965) 0.4093 4.1294 -0.6494
26.2000 20.2000 4.3500 (4.1272;0.4015) -0.2228 4.1618 0.1882
24.8000 21.5000 4.3800 (4.1821;0.4712) -0.1979 4.5784 -0.1984
27.7000 20.6000 4.3900 (4.7187;0.4845) 0.3287 4.1905 0.1995
26.2000 22.0000 5.0200 (4.7062;0.4712) -0.3138 4.6388 0.3812
23.9000 22.0000 4.7700 (4.7769;0.4856) 0.0069 4.7573 0.0127
28.1000 23.4000 5.3600 (5.3601;0.5402) 0.0001 4.9118 0.4482
23.0000 18.5000 3.8500 (3.5573;0.3672)) -0.2927 3.8762 -0.0262
26.0000 16.4000 2.9400 (3.0494;0.2895) 0.1094 3.1651 -0.2251
23.6000 21.0000 4.2800 (4.3751;0.4465) 0.0951 4.5077 -0.2277
22.4000 15.0000 4.1400 (4.1108;0.3906) -0.0292 2.9796 1.1604
22.6000 19.4000 4.3100 (4.2770;0.4126) -0.0330 4.1353 0.1747
23.4000 20.3000 4.1300 (4.1180;0.4248) -0.0120 4.3326 -0.2026
27.5000 22.0000 3.6400 (4.8504;0.5012) 1.2104 4.5718 -0.9318
32.0000 19.4000 3.4200 (3.4581;0.3525) 0.0381 3.6509 -0.2309
25.2000 20.2000 3.2100 (3.7052;0.3801) 0.4952 4.2133 -1.0033
24.7000 14.6000 2.6200 (2.5190;0.2499) -0.1010 2.7551 -0.1351
23.4000 21.7000 4.8600 (4.9977;0.5121) 0.1377 4.7035 0.1565
26.2000 21.8000 4.9700 (4.6058;0.4721) -0.3642 4.5858 0.3842

ERROR εNetwork = 0.1479 εLSE = 0.2906

7. Acknowledgement

This work was supported by the Scientific Research Projects Council of Ahi Evran University,
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